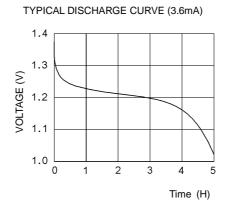
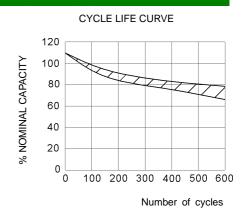
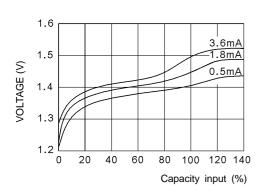
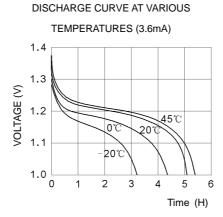

675 Ni-MH BUTTON CELL

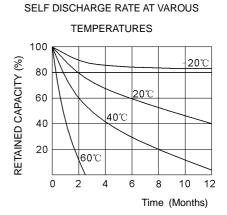

TECHNICAL DATA



Model	Voltage	Capacity	Recommended Trickle Charge Current	Nominal Charge Current	Normal Charging Time	Nominal Discharge Current	Weight
675	1.2V	50mAh	1.5~2.5mA	5mA	14~16h	10mA	1.9g


TECHNICAL CHARACTERISTICS





TYPICAL CHARGE CURVE AT VARIOUS CURRENTS

TECHNICAL INFORMATION

1. APPLICATION

This specification applies to the Ni-MH batteries

Model : 675

2. CELL AND TYPE

2.1 Cell : Sealed Ni-MH Button Cell

2.2 Type : Button type2.3 Size type : 1.2V

3. RATINGS

3.1 Nominal voltage : 1.2V3.2 Nominal capacity : 50mAh3.3 Typical weight : 1.9q

3.4 Standard charge : 5mAx14hours3.5 Rapid charge : 10mAx6hours

Trickle current : 1.5mA 3.6 Discharge cut-off voltage: 1.0V

3.7 Temperature range for operation (Humidity: Max.85%)

Standard charge $0 \sim +45$ Rapid charge $+10 \sim +45$ Trickle charge $0 \sim +45$ Discharge $-10 \sim +45$

3.8 Temperature range for storage (Humidity: Max.85%)

Within 2 years $-20 \sim +35$ Within 6 months $-20 \sim +45$ Within a month $-20 \sim +45$ Within a week $-20 \sim +55$

4. ASSEMBLY & DIMENSIONS

Per attached drawing

5. PERFORMANCE

5.1 TEST CONDITIONS

The test is carried out with new batteries (within a month after delivery) ambient conditions

Temperature: $+25 \pm 5$ Humidity: $60 \pm 20\%$

Note 1

Standard charge : 5mAx14hours Standard discharge : 10mA to 1.0V

5.2 TEST METHOD & PERFORMANCE

Test	Unit	Specification	Conditions	Remarks
Congoity	mAh	>50	Standard	Up to 3 cycles
Capacity	MAN	≥50	Charge/discharge	Are allowed
Open Circuit Voltage		≥1.3	After 1 hour standard	
Voltage (OCV)	(V)	21.3	Charge	
Internal	mΩ/cell	≤800	Upon fully charge	
Impedance			(1KHz)	
High rate	Minute	≥60	Standard charge	
Discharge (9 mA)	wiiiiute	200	Before discharge	
Discharge	mA	25	Maximum continuous	
Current	IIIA	25	Discharge current	
Over charge		No leakage	1.5mA charge	
Over charge		Not explosion	one year	
Charge			Standard charge;	
Retention	mAh	37.5	Storage: 28 days;	
Retention			Standard discharge	
Cycle Life	Cycle	≥400	IEC/CEI61951-2:2001.	
Cycle Lile	Сусте	2400	4.4	
Leakage		No leakage nor	Fully charge at 5mA,	
Leakaye		Deformation	Stand 14 days	

Note 2 IEC/CEI61951-2:2001. 4.4 cycle life

Cycle number	Charge	Stand in charged	Discharge
		Condition	
1	5mA for 16h	None	12.5mA for 2h20min
2-48	12.5mA for 3h10min	None	12.5mA for 2h20min
49	12.5mA for 3h10min	None	12.5mA to 1.0V/cell
50	5mA for 16h	1h to 4h	10mA to 1.0V/cell

^{1.}Before the endurance in cycles test, the cell shall be discharged at 10mA to a final voltage of 1.0V/cell.

5.3 Humidity

The battery shall not leak during the 14 days which it is submitted to the condition of a temperature of 33±3 and a relative humidity of 80±5%.

6. OTHERS

- 6.1 We recommend you to set the cut-off voltage at 1.0V/cell.
- 6.2 If the cut-off voltage is above 1.1V/cell, the battery may be underutilized resulting insufficient use of the available capacity.
- 6.3 If it is below 1.0V/cell, the battery may have discharge or reverse charge to the cell.

7. PRECAUTION

The cells shall be delivered in charged condition. Before testing or using, the cell shall be discharged at 20±5 at a constant current of 3.6mA to a final voltage of 1.0V/cell.

^{2.}The following endurance test shall then be carried out, in an ambient temperature of 20℃±5℃.

- 7.1 Avoid throwing cells into a fire or attempting to disassemble them.
- 7.2 Avoid short circuiting the cells.
- 7.3 Avoid direct solidarity to cells.
- 7.4 Observe correct polarity when connecting.
- 7.5 Do not charge with more than our specified current.
- 7.6 Use cells only within the specified working temperature range.
- 7.7 Store cells in dry and cool place.